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This work deals with an axisymmetrical shell composed of a cylindrical shell closed by
two hemispherical shells made of the same material and with the same thickness. The shell is
immersed into a homogeneous perfect #uid extending to in"nity. The "rst part is devoted to
the establishment of the equations governing the shell vibrations. The method used, which,
in the authors' opinion, is not quite new, is based on the expansion of the elasticity equations
into a Taylor series of the transverse variable: by using the same degree of expansion, the
equations obtained for the cylindrical part and for the spherical parts are consistent (they
correspond to the Donnell and Mushtari approximation). The "rst interest of this analysis is
that the continuity conditions along the junction lines between the cylindrical and the
spherical parts are immediately obtained. The main problem is to obtain the boundary
conditions satis"ed by the hemispherical shells displacement at the apexes. Indeed, due to
the use of spherical co-ordinates*which is a quite natural choice*the coe$cients of the
equations become singular at the apexes and boundary conditions are required to express
that an apex is a mechanically regular point. The method that is used here enables one to
obtain such a result which, to the authors' knowledge, is new. The transient response of
the system shell/external #uid is sought as a series of its resonance modes, that is its free
oscillations. The main di$culty is to obtain a numerical approximation of the resonance
modes: their calculation leads to solving the Fourier transform of the system of
homogeneous equations. The numerical method for solving the problem is the following.
The acoustic pressure is described by a hybrid layer potential, the density of which is
approximated by a linear combination of orthogonal polynomials. Each component of the
shell displacement is approximated by a linear combination of polynomial functions: these
functions are chosen as linear combinations of orthogonal polynomials which satisfy
the same continuity and boundary conditions as the shell displacement components. In the
"rst step, the resonance frequencies are calculated. Then the coe$cients of the corresponding
resonance mode expansion are deduced. The validity and the e$ciency of this approach will
be shown in a second article through comparisons between numerical predictions and
experimental results. ( 2001 Academic Press
1. INTRODUCTION

The structure considered here is often called ¸ine 2@ in the French literature. It is composed
of a thin elastic cylinder closed at both ends by two thin elastic hemispherical end-caps. It is
immersed in a perfect #uid which extends to in"nity. Its interior is a vacuum.
0022-460X/01/130459#25 $35.00/0 ( 2001 Academic Press
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The study of the vibro-acoustics response of such a structure has various motivations.
When the #uid is water, if the ratio of the total length to the diameter is about 2, the structure
corresponds to a model of an underwater mine. For larger values of this ratio, it corresponds
to the idealization of a torpedo or a submarine. A long ¸ine 2@ structure "lled up with air and
immersed in the same gas can be considered as the idealization of an airplane fuselage.

Although few publications are devoted to the transient acoustic di!raction by ¸ine 2@
shells, di!erent approaches have already been used to solve closely related problems.
A coupled "nite element*boundary element method is applied to the analysis, in the
frequency domain, of the acoustic di!raction by spherical shells in reference [1] and a
¸ine 2@ shell in reference [2]. More details are given about the numerical method in
reference [3]. In the "eld of acoustic scattering, the resonances of ¸ine 2@ structures can also
be estimated by the phase-matching method [4] from the propagation of &&surface waves''
which produce, for certain frequencies called the resonance frequencies, standing waves over
the circumference of the structure.

The present work deals with the response of the structure to a transient incident wave. This
is not at all a restriction: the method which is proposed applies for any transient excitation
and can easily be extended to any random excitation (as, for example, the wall pressure
induced by an external turbulent #ow). Basically, the response of the system is sought as
a series expansion of the resonance modes, that is to say of the free oscillations. The advantage
of the resonance modes, compared with the in vacuo structure modes, is that there are
intrinsically related to the physical properties of both the structure and the #uid. The main
numerical di$culty is to compute these modes (at least, a su$cient number of them).

The second section is devoted to the establishment of a thin-shell approximation of the
elasticity equations. The "rst motivation is that it is necessary to use the same degree of
approximation for the cylindrical and the hemispherical parts: the method used here leads
to the Donnell and Mushtari approximation. The main point concerns the spherical
end-caps. Indeed, it is natural to express the shell equations in spherical co-ordinates. But at
the apexes*the points h"0 and n in spherical co-ordinates*boundary conditions are
required to express that these points are ordinary points, that is to say points where
displacement components, forces, momentum, etc. are "nite. This result which, to our
knowledge, is new, is deduced from the expression of the shell strain energy.

In the next section, it is shown that the response of the system vibrating
structure/surrounding #uid can be expressed in terms of the resonance modes. By using
a Fourier series with respect to the angular variable of the natural cylindrical co-ordinate
system and a boundary integral representation of the di!racted acoustic pressure, the
equations governing the resonance mode are reduced to a sequence of systems of
integro-di!erential equations of one variable only.

In section 4, a numerical method is proposed: it is based on polynomial approximations.
The layer density used for the acoustic pressure representation is expanded into a truncated
series of Legendre polynomials. The components of the shell displacement are expanded
into truncated series of polynomial functions. These functions are "nite linear combinations
of Legendre polynomials which are chosen to satisfy (1) the continuity conditions along the
junction lines between the cylindrical shell and the spherical ones, and (2) the boundary
conditions at the apexes. The coe$cients of these truncated series are solutions of a system
of Ritz}Galerkin equations. But, due to a classical property of orthogonal polynomials, the
Ritz}Galerkin equations are replaced by a system of collocation equations, whose matrix is
less time consuming to compute.

In the last section, numerical results are mentioned which can be found in reference [5]
and, with much more detail, in reference [6]. These results will be presented in
a forthcoming paper.
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2. EQUATIONS GOVERNING THE SHELL VIBRATIONS

2.1. THE ¸INE 2@ SHELL: GEOMETRY AND ASSOCIATED CO-ORDINATE SYSTEMS

The structure is composed of three elementary thin shells R
1
, R

2
and R

3
. The elements

R
1

and R
3

are two identical hemispherical end-caps which close the extremities of
a cylindrical element R

2
. They all have the same mean radius R and the same thickness

h which is assumed to be a few percent of R; the length of the cylindrical part is 2¸.
The three elements are made of the same material, characterized by a density .

s
,

a Young's modulus E and the Poisson ratio l. A co-ordinate system is associated with each
element (see Figure 1).

The method used here to establish the equations which govern the vibrations of the
cylindrical and the spherical elements is based on the following assumptions.

1. The thickness h of the shell is small compared to its other dimensions and to the
wavelengths involved.

2. As a consequence, it is assumed that the various mechanical quantities*displacement
components, strain and stress tensors components*can be approximated by a low order
Taylor series of the transverse variable r which varies from !h/2 to h/2.
Figure 1. Geometry of ¸ine 2@ and the three co-ordinate systems.
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3. The external surfaces of the shell r"$h/2 are free (the forces are negligible compared to
the stresses' approximations).

Then, the virtual work theorem is applied to obtain the energetic form of the equations
governing the structural vibrations. The continuity conditions along the common
boundaries of the cylindrical and the hemispherical parts are immediately obtained; the
boundary conditions at the apexes require a more detailed analysis of the stresses. The
details of these calculations can be found in references [6, 7]. The approximations
developed here can be found, together with more accurate equations, in many textbooks,
such as reference [8] or [9].

2.2. EQUATIONS GOVERNING THE CYLINDRICAL SHELL VIBRATIONS

The elastic solid occupies the three-dimensional domain X
2

de"ned in cylindrical
co-ordinates by

X
2
,MR

2
"R#r with !h/2(r(#h/2, 0)u(2n, !¸(z(#¸N .

Use is made of the notation f
,x
"Lf /Lx for the derivative of a function f with respect to the

variable x. The displacement of a point of the solid is denoted;e
z
#<eu#=e

r
. The strain

tensor D
ij

is thus
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Hooke's law relates this tensor to the stress tensor S
ij

by
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The hypothesis that h is small suggests looking for truncated Taylor series for the shell
displacement and the stress tensor:

;";0(z, u)#r;1(z, u)#O(r2),

<"<0 (z, u)#r<1 (z, u)#O(r2),

="=0(z, u)#r=1(z, u)#O (r2),

S
ij
"S0

ij
(z, u)#rS1

ij
(z, u)#O (r2), with i, j"r, u, z .
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The condition of a &&free boundary'' for r"$h/2, together with the approximation
1/(R#r)KR~1(1!r/R) are used. They lead to

;1"!=0
,z

, <1"(1/R) (<0!=0
,u

), =
1
"0.

The only unknown functions are thus

u";0, v"<0, w"=0 .

The strain tensor components are thus approximated by
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The corresponding stress tensor components are
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and the approximation of the potential energy density is expressed as
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In this expression, the tensor components d
zu

(resp. p
zu

) and duz
(resp. puz

) have been
distinguished though their expressions are the same: indeed, they represent di!erent
physical quantities which, in the "nal expression of the virtual work theorem, give di!erent
boundary terms.

Because the (u, v, w) do not depend on r, this expression can be integrated analytically
with respect to this variable; the only terms to be accounted for are those which involve an
even power (0 and 2) in r; the odd powers give an integral which is zero. Thus, the
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approximation of the potential energy of the shell is given by
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The kinetic energy is
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where gR denotes the time derivative of any function g. Let f be the density of a force exerted
on the shell with components ( f

z
, fu , f

r
). The virtual work theorem leads to the following

variational equation for the thin shell:
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This integral relationship must be satis"ed for any virtual displacement vector (du, dv, dw):
this can be achieved if the surface integrals and the boundary integrals are equal to zero
independently.

The boundary integrals represent the energy which is lost (or received) by the shell along
the circles z"$¸. This approximation is known as the Donnell and Mushtari cylindrical
shell equation.
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One can now recall the physical meaning of the various terms in the boundary integrals.
The coe$cients of the displacement components du, dv and dw are force line densities:
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The term proportional to dw
,u

/R, the derivative of the virtual normal displacement in the
u direction, is a twisting momentum line density:

M
zu
"

Eh3

12(1!l2)
1!l

R
w
,uz

. (6@)

Finally, the term proportional to dw
,z

, the z-derivative of the virtual normal displacement, is
a bending momentum line density:
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2.3. EQUATIONS GOVERNING THE SPHERICAL SHELL VIBRATIONS

In what follows, the variable h denotes h
1
or h
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By using Hooke's law, the stress tensor is written as
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As done for the cylindrical shell, the displacement and the stress tensor components are
sought as truncated Taylor series:
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The potential energy of the shell is thus approximated by
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Its kinetic energy has a form similar to that of the cylindrical shell.
Upon assuming that the shell is excited by a force with density ( fh , fu , f

r
), the virtual work

theorem leads to the variational form of the spherical shell equation:
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Integration by parts are then performed and boundary integrals appear:
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#(2!l#cotg2 h) cotg h

L
LhB ,

(12A)

Fhh"
Eh

(1!l2)RAu,h#lu cotg h#l
v
,u

sin h
#(1#l)wB,

Fhu"
Eh

(1!l2)R
1!l

2 A
u
,u

sin h
#v

,h
!v cotg hB,

Fhr"
Eh3

12(1!l2)R3 Gcotg hA
w
,uu

sin2 h
#lw

,hh#w
,h

cotg hB
!

1

sin hCsin hAl
w
,uu

sin2 h
#w

, hh#lw
,h

cotg hBD
,h

!

1!l
sin2 h

[w
,hu!w

,u
cotg h]

,uH,
Mhh"

Eh3

12(1!l2)R3 Aw,hh#l
w
,uu

sin2 h
#lw

,h
cotg hB ,

Mhu"
Eh3

12(1!l2)R2

1!l
sin h

(w
,hu!w

,u
cotg h). (13)

The functions Fhh , Fhu and Fhr are line densities of forces; the functions Mhh and Mhu are line
densities of momentums. Equation (11) is the energetic form of the Donnell and Mushtari
approximation for a spherical shell.

It must be noticed that, in equation (11), the term !dw
,u

Mhu can be integrated by parts
and thus replaced by #dw(TrMhu),u , where (TrMhu),u is the derivative with respect to u of
the value, along the boundary, of the momentum Mhu .

2.4. REGULARITY CONDITIONS AT THE APEXES OF THE SPHERICAL ELEMENTS

Equation (11) can be solved if boundary conditions are given along the two lines h"0
a

and 0
b
. But if one of these two lines does not exist*which is the case if, for example,

0
a
"0*the boundary condition to be imposed to the shell displacement must express that

this point is not di!erent from any other point. This implies that the virtual work exerted by
the forces and momentums along the line h"0

a
must tend to 0 when 0

a
tends to zero.

2.4.1. Normal shearing force

The cancellation of the virtual work due to the normal shearing force

Fhr"
Eh3

12(1!l2)R3 Gw,hhh!
w
,uuh

sin2 h
#w

,hh cotg h

#2lw
,uu

cotgh
sin2 h

#

1#(1!l) cos2 h
sin2 h

w
,hH
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is obtained if F0
ar

sin0
a
P0 for 0

a
P0. One can seek w of the form

w"w
0
(h)#hwN (h, u), P

2n

0

wN (h, u) du"0,

where w
0

and wN are assumed to have Taylor series around h"0. The term w
,hh cotg h has

zero contribution if

w
0,hh (0)#2wN

,h
(0, u)"0 ∀uNw

0,hh (0)"wN
,h

(0, u)"0.

The term w
,uu cotg h/sin2 h has no contribution if wN

,uu(0, u)"0. The virtual work of the
term

!

w
,uuh

sin2 h
#

1#(1!l) cos2 h
sin2 h

w
,h

is zero if the following condition is ful"lled:

lim
h?0G

!wN
,uu#(2!l) (w

0,h
#wN )

h
!wN

,uuh#(2!l)wN
,hH"0.

As a consequence of the former conditions, one has

w
0,h

(0)"wN (0, u)"0.

This implies that w
,uu is zero at h"0.

2.4.2. ¹angential forces

The forces Fhh and Fhu produce virtual works which tend to zero for 0
a
P0 if

lim
0
a?0

Mhu
,h
#l (u#v

,u
)#h(1#l)wN"0, lim

0
a?0

Mu
,u
#hv

,h
!vN"0.

The results in two conditions:

u (0, u)#v
,u

(0, u)"0, u
,u

(0, u)!v(0, u)"0.

These two conditions are not su$cient. Indeed, one can note that the shell displacement,
being a periodic function of u, can be expanded into a Fourier series with respect to this
variable. For conditions at the apex are required for each Fourier component: the former
two equalities reduce to only one for the components !1 and #1. It is thus necessary to
"nd an additional condition.

2.4.3. Relationship between the tangential forces Fhh and Fuu

The force Fhh (0a
, u

1
) is exerted normally to a length element of the circle h"0

a
around

the point u"u
1
. But it can also be considered as the force exerted in the same direction on

a length element of the circle c (see Figure 2). It is thus of the same nature as the force
Fuu (0

a
, u

1
) which is exerted on the length element of the circle u"u

1
around the point

h"0
a
. This property remains true when 0

a
P0. The angle between the two circles c and

u"u
1

being equal to n/2, one must have

Fhh (0, u)"Fuu (0, u!n/2)



Figure 2. Regularity problems at the apex: relationship between the tangential force Fhh and Fuu at a point with
co-ordinates 0

a
P0.
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(at the other apex, one has Fhh(n, u)"Fuu (n, u#n/2).) The force Fuu has the following
expression:

Fuu"
Eh

(1!l2)R Alu,h#u cotg h#
v
,u

sin h
#(1#l)wB.

One can seek u and v of the form

u (h, u)"u
1
(h)e*u#u

~1
(h)e~*u#huN (h, u),

v(h, u)"v
0
(h)#v

1
(h) e*u#v

~1
(h)e~*u#hvN (h, u),

where the function uN (h, u) is orthogonal to e*u and e~*u, and vN (h, u) is orthogonal to 1, e*u

and e~*u. One immediately has

v
0
(0)"0, u

1
(0)#iv

1
(0)"0, u

~1
(0)!iv

~1
(0)"0.

The relationship between the two tangential forces is expressed by

u
1,h(0)(1!il)e*u#u

~1,h (0)(1!il)e~*u#(1#l) [uN (0, u)!uN (0, u!n/2)]"0 ∀u,

lim
0
a?0

1

0
a

(lvN
,u

(0, u)!vN
,u

(0, u!n/2))"0 ∀u.

This provides the missing equalities

u
1,h(0)"0, u

~1,h(0)"0, uN (0, u)"0, vN
,u

(0, u)"0.
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2.4.4. ¹he boundary conditions at the apex

One can now gather all the results. First, the shell displacement has the form

u (h, u)"u
1
(h)e*u#u

~1
(h)e~*u#huN (h, u) ,

v (h, u)"v
0
(h)#v

1
(h)e*u#v

~1
(h)e~*u#hvN (h, u) ,

w (h, u)"w
0
(h)#hwN (h, u) (14)

with

P
2n

0

wN (h, u) du"P
2n

0

vN (h, u) du"P
2n

0

uN (h, u)e$iu du"P
2n

0

vN (h, u)e$iu du"0.

The various functions which appear in these formulas satisfy the boundary conditions

v
0
(0)"0, u

1
(0)#iv

1
(0)"0, u

1,h(0)"0,

u
~1

(0)!iv
~1

(0)"0, u
~1,h(0)"0, uN (0, u)"vN

,u
(0, u)"0,

w
0,h(0)"w

0,hh(0)"wN (0, u)"wN
,h(0, u)"0.

If 0
a
'0 but 0

b
"n, the boundary conditions which are required at this last point are

easily deduced from the previous ones: the second and fourth conditions in equation (14@)
are replaced by u

1
(n)!iv

1
(n)"0 and u

~1
(n)#iv

~1
(n)"0 respectively.

This result is very similar to that of reference [10] but not totally identical. The proof
presented in this paper is very condensed. Thus, it has not been possible to clarify the
reasons which lead to authors to slightly di!erent continuity conditions. Moreover, the
conditions proposed in reference [10] are not compatible with the energetic form (11) of
the Donnell and Mushtari approximation for a spherical shell and so, one cannot examine
what are the potential implications when using the continuity conditions from reference
[10]. However, according to reference [11], it seems that the eigenfrequencies
corresponding to the free vibration problem for deep spherical shell elements are weakly
dependent on the boundary conditions imposed at the apex.

3. RESPONSE OF THE ¸INE 2@ SHELL TO A TRANSIENT EXCITATION

Consider a ¸ine 2@ shell as de"ned at the beginning of section 2. It is immersed in
a homogeneous and isotropic #uid extending to in"nity and characterized by a density
.
0

and a sound speed c
0
.

One starts with the variational form (energetic form) of the equations which govern
the transient response of the #uid-loaded shell. The aim of this study is to express the
response of the system by a series of resonance modes, that is of its free oscillations. Two
methods are proposed: (1) the transient response of the shell being sought as a series of the
resonance modes, the coe$cients are solution of an in"nite system of linear algebraic
equations; (2) the time Fourier transform of the equations are solved in terms of the
eigenmodes and, then, by an inverse time Fourier transform, an analytical expression of the
coe$cients of the resonance modes series is obtained.
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3.1. VARIATIONAL FORM OF THE GOVERNING EQUATIONS

It is convenient to de"ne a unique co-ordinate system on the shell surface. The location of
a point M is de"ned by the angular variable u and a curvilinear abscissa s which varies from
!Rn/2!¸ to #Rn/2#¸ (see Figure 3). The displacement of M is the vector
ue

s
#veu#we

r
where e

s
is the unit vector tangent to the shell and parallel to the z-axis, eu is

the unit vector tangent to the shell and orthogonal to the z-axis, and e
r
is the unit vector

orthogonal to the shell surface and pointing out to its exterior; these vectors form a direct
trihedron.

Without loss of any generality in the method developed here, it is assumed that the system
shell/#uid is excited by an incident acoustic "eld pi, which is zero for t(0 and is assumed to
be a square integrable function on any "nite space domain and any "nite time interval: this
corresponds to an incident "eld of "nite power. The di!racted "eld is denoted by p: this
function satis"es a homogeneous wave equation and an outgoing wave condition to ensure
the uniqueness of the solution. The values on the shell surface of pi and p are, respectively,
denoted by Tr pi and Tr p; the values of their normal derivatives are denoted by TrL

r
pi and

Tr L
r
p. The variational form of the governing equations is written as

Eh

1!l2 P
`=

0
AH (u, v, w; du, dv, dw)(t)#.

s
h PR

[uK du*#vK dv*#wK dw*](M, t) dMBdt

#P
`=

0
PR

[Tr p dw*](M, t) dMdt"! P
`=

0
PR

[Tr pi dw*](M, t) dMdt

.
0 P

`=

0
PR

[wK dt*](M, t) dM dt#P
`=

0
PR

[Tr L
r
p dt*](M, t) dMdt

"! P
`=

0
PR

[Tr L
r
pi dt*](M, t) dMdt, ∀ du, dv, dw, dt. (15)
Figure 3. Components (u, v, w) of the shell displacement at a point M with co-ordinates (u, s).
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The "rst equality is the energy balance of the shell, while the second expresses the continuity
between the normal velocity of the shell and that of the #uid particles. The functional H is
the bilinear form associated with the potential energy. It has di!erent expressions on the
various shell elements, which are de"ned as follows:

On the cylindrical element R
2
, it is given by

H
2
(u, v, w; du, dv, dw)"P

2n

0

R du P
L

~L

dsGu, s du*
,s
#

1

R2
(v
,u
#w)(dv*

,u
#dw*)

#

l
R

(v
,u
#w) du*

, s
#

l
R

u
,s
(dv*

,u
#dw*)#

1!l
2 A

u
,u

R
#v

, sBA
du*

,u

R
#dv*

, sB
#

h2

12
[w

, ss
dw*

, ss
#

1

R4
w
,uu dw*

,uu#
l

R2
w
,uu dw*

,ss

#

l
R2

w
,ss

dw*
,uu#

1!l
R2

w
, su

dw*
,su

#

1!l
R2

w
,us

dw*
,usDH , (16)

On the spherical elements R
i
(i"1, 3), H is given by

H
i
(u, v, w; du, dv, dw)"P

2n

0

R du P
bi

ai

sin h
i
dsGAu, s#

w

RBAdu*
, s
#

dw*

R B
#

1

R2A!u cotg h
i
#

v
,u

sin h
i

#wBA!du* cotg h
i
#

dv*
,u

sin h
i

#dw*B
#

l
RA!u cotg h

i
#

v
,u

sin h
i

#wBAdu*
, s
#

dw*

R B
#

l
RAu,s

#

w

RBA!du* cotg h
i
#

dv*
,u

sin h
i

#dw*B
#

1!l
2 A

u
,u

R sin h
i

#

v cotg h
i

R
#v

, sBA
du*

,u

R sin h
i

#

dv* cotg h
i

R
#dv*

, sB
#

h2

12 Cw,ss
dw*

,ss
#

1

R4A
w
,uu

sin2 h
i

!Rw
,s
cotgh

iBA
dw*

,uu

sin2 h
i

!R dw*
,s
cotg h

iB
#

l
R2A!Rw

, s
cotg h

i
#

w
,uu

sin2 h
i
B dw*

, ss
#

l
R2

w
,ssA!R dw*

, s
cotg h

i
#

dw*
,uu

sin2 h
i
B

#

1!l
R4 sin2 h

i

(Rw
,su

#w
,u

cotg h
i
) (R dw*

, su
#d

i
w*
,u

cotg h
i
)

#

1!l
R4 sin2 h

i

(Rw
,us

#w
,u

cotg h
i
) (R dw*

,us
#dw*

,u
cotg h

i
)DH. (17)

In these equations, the unknown functions u, v, w and Tr p (together with the test func-
tions du, dv, dw and dt) belong to convenient functional spaces corresponding to the
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following properties:

(1) u, v, w and Tr p are square integrable on R and on any "nite time interval;
(2) the "rst order derivatives of u and v, and the derivatives of orders 1 and 2 of w with

respect to the space variables s and u are square integrable on R and on any "nite time
interval;

(3) u, v, and w satisfy the conditions at the apexes: by choosing the shell displacement of
the form

u(s, u)"u
1
(s)e*u#u

~1
(s)e~*u#(s!¸!Rn/2)(s#¸#Rn/2); (s, u) ,

v(s, u)"v
0
(s)#v

1
(s)e*u#v

~1
(s)e~*u#(s!¸!Rn/2)(s#¸#Rn/2)< (s, u),

w (s, u)"w
0
(s)#(s!¸!Rn/2)(s#¸#Rn/2)=(s, u) (18)

with

P
2n

0

;(s, u) e$iu du"P
2n

0

<(s, u) du"P
2n

0

<(s, u)e$iu du"P
2n

0

=(s, u) du"0,

the regularity conditions are

v
0
(s)"0,

!u
1
(s)#sgn(s)iv

1
(s)"0, u

1,s
(s)"0,

!u
~1

(s)!sgn(s)iv
~1

(s)"0, u
~1,s

(s)"0,

;(s, u)"<
,u

(s, u)"0,

w
0,s

(s)"w
0,ss

(s)"=(s, u)"=
, s
(s, u)"0,

e
g
g
g
f
g
g
g
h

at s"$(¸#Rn/2) (18@)

(the time variable has been omitted)
(4) along the lines s"$¸, the shell displacement components and the e!orts

densities*as de"ned by equations (6), (6@), (6A) and (13)*must satisfy the following
continuity conditions:

lim
e?0

Mu($¸#e, u)!u($¸!e, u)N"0,

lim
e?0

Mv ($¸#e, u)!v($¸!e, u)N"0,

lim
e?0

Mw($¸#e, u)!w($¸!e, u)N"0,

lim
e?0

ML
s
w ($¸#e, u)!L

s
w ($¸!e, u)N"0, (19)

lim
e?0Cu, s#

l
R

(v
,u
#w)D (!¸#e, u)"lim

e?0Cu, s#
l
R

(v
,u
#w)#

w

RD (!¸!e, u),

lim
e?0Cu, s#

l
R

(v
,u
#w)D (#¸!e, u)"lim

e?0Cu, s#
l
R

(v
,u
#w)#

w

RD (#¸#e, u),
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lim
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e?0A

u
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, sB (!¸!e, u),
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u
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R
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lim
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w
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l
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w
,uuB (!¸!e, u),

lim
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#

l
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w
,uuB (#¸!e, u)"lim

e?0Aw, ss
#

l
R2

w
,uuB (#¸#e, u), (19@)
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#

w
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R2 B#

1!l
R2

w
,uusH (!¸#e, u)

"lim
e?0GAw, sss

#

w
,uus
R2

#l
w
,s

R2B#
1!l
R2

w
,uusH (!¸!e, u),
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e?0GAw,sss

#

w
,uus
R2 B#

1!l
R2

w
,uusH (#¸!e, u)

"lim
e?0GAw, sss

#

w
,uus
R2

#l
w
,s

R2B#
1!l
R2

w
,uusH (#¸#e, u), (19A)

It is interesting, in particular for numerical purposes, to be left with equations along
R only. For this purpose, a boundary integral representation of the di!racted pressure is
introduced: use of a hybrid layer potential representation is preferred to the Green
representation; its interest appears when harmonic regimes are considered:

p(M, t)"P
`=

0

dt@ PR

k(M@, t@) (G(M, M@; t!t@)#e L
r{
G(M, M@; t!t@)) dM@ (20)

with G(M, M@; t!t@)"!

d (t!t@!r (M, M@)/c
0
)

4nr (M, M@)
,

where G(M, M@; t!t@) is the free"eld Green's kernel of the wave equation satisfying the
outgoing wave condition; r(M, M@) is the distance between M and M@; k (M@, t@) is an
unknown square integrable layer density; e is an arbitrary constant. The Green kernel
involving a Dirac measure, the above integrals must be understood as duality products.
One can introduce the following boundary operators:

i
1
(k)"TrGP

`=

0

dt@PR

k (M@, t@)(G (M, M@; t!t@)#e L
r{
G(M, M@; t!t@)) dM@H ,

i
2
(k)"Tr L

rGP
`=

0

dt@ PR

k (M@, t@) (G (M, M@; t!t@)#e L
r{
G(M, M@; t!t@)) dM@H .

The variational equations (15) thus become

Eh

1!l2 P
`=

0
AH(u, v, w; du, dv, dw)(t)#.

s
h PR

[uK du*#vK dv*#wK dw*](M, t) dMBdt
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#P
`=

0
PR

[i
1
(k) dw*](M, t) dMdt"!P

`=

0
PR

[Tr pi dw*](M, t) dM dt ,

.
0 P

`=

0
PR

[wK dt*](M, t) dMdt#P
`=

0
PR

[i
2
(k) dt*](M, t) dM dt

"! P
`=

0
PR

[Tr L
r
pi dt*](M, t) dMdt, ∀ du, dv, dw, dt. (21)

Finally, all the functions involved in equations (21) being 2n-periodic with respect to the
variable u, this equation can be replaced by a sequence of variational equations for the
Fourier components of the unknown functions. Let f (s, u) be any function de"ned on R; its
Fourier series is written as

f (s, u)"
`=
+

n/~=

f
n
(s)einu .

The Fourier components of the operators H are, respectively, denoted by Hn : they are
obtained by replacing the derivation operator Lu by in. The Fourier components of i

1
and

i
2

are denoted in
1

and in
2
: they are deduced from the Fourier components of the free"eld

Green's kernel which are known in spherical and in cylindrical co-ordinates as inverse time
Fourier transforms (see, for example, reference [12]). The variational equations are replaced
by the following set of unidimensional variational equations:

Eh

1!l2 P
`=

0
AHn (u

n
, v

n
, w

n
; du

n
, dv

n
, dw

n
)(t)#.

s
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n
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`=
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1
(k

n
) dw*

n
](s, t) dsdt"! P

`=

0
PL [Tr pi

n
dw*

n
](s, t) ds dt ,

.
0 P

`=

0
PL [wK
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dt*

n
](s, t) dsdt#P

`=

0
PL [in

2
(k

n
) dt*

n
](s, t) dsdt

"! P
`=

0
PL [Tr L

r
pi
n
dt*

n
](s, t) dsdt, ∀ du

n
, dv

n
, dw

n
, dt

n
and !R(n(#R,

(22)

where L is the interval [!¸!Rn/2,#¸#Rn/2] of variation of s. The functions u
n
, v

n
,

w
n
, du

n
, dv

n
and dw

n
satisfy the continuity conditions and the regularity conditions at the

apexes deduced from equations (18), (18@), (19), (19@) and (19A).

3.2. EIGENMODES AND RESONANCE MODES

Consider now a harmonic time dependence (e~*u5). The time Fourier transform of
a function f is denoted by f K. The set of equations (22) becomes

Eh

1!l2
Hn (uL

n
, vL

n
, wL

n
; duL

n
, dvL

n
, dwL

n
)!.

s
hu2 PL [uL

n
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n
#vL

n
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n
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n
dwL *

n
](s) ds

#PL [i( n
1u(kL ) dw*

n
](s) ds"!PL [Tr pL i

n
dwL *

n
](s) ds,
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!.
0
u2 PL [wL

n
dt*

n
](s) ds#PL [i( n

2u(k(
n
) dt*

n
](s) ds

"!PL [Tr L
r
pL i
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dtL *

n
](s) ds, ∀ duL

n
, dvL

n
, dwL

n
, dtL

n
and !R(n(#R. (23)

The boundary operators iL n
1u and i( n

2u are de"ned by

iL nu(kL
n
) (M)"!2nPLkL

n
(s@)[Gn(M, M@)#e L

r{
Gn(M, M@)] ds@,

G
n
(M, M@)"!P

2n

0

eiur(M;o@,z@,h@)/co

4nr (M; o@, z@, h@)
e*nh{dh ,

iL n
1u(kL

n
)"TriL nu(k

n
) , iL n

2u (kL
n
)"Tr L

r
iL nu(k

n
) , (23@)

where the point M@ is de"ned by its cylindrical co-ordinates (o@, z@, h@); let s@ be its curvilinear
abscissa on the shell surface.

The eigenmodes (uJ m
n
, vJ m

n
, wJ m

n
, kJ m

n
) of the #uid-loaded shell and the eigenvalues Km

n
are the

solutions of the following homogeneous equations:

Eh

1!l2
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n
, vJ m

n
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n
; duL

n
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2u (k8 m
n
) dtL *

n
](s) ds"0,

∀duL
n
, dvL

n
, dwL

n
, dtL

n
and !R(n(#R. (24)

They depend on the angular frequency through the boundary operator iL n
1u and iL n

2u . The
eigenmodes (uJ ~m

n
, vJ ~m

n
, wJ ~m

n
, kJ ~m

n
) and eigenvalues K~m

n
which correspond to a negative

angular frequency !u are given by

(uJ ~m
n

, vJ ~m
n

, wJ ~m
n

, kJ ~m
n

)"(uJ m*
n
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n
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n
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n

.

The eigenmodes satisfy the orthogonality relationship
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n
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n
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n
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n
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where dq
m

is the Kronecker symbol. These equalities are obtained by (1) replacing
(duL

n
, dvL

n
, dwL

n
) by (uJ q*

n
, vJ q*

n
, wJ q*

n
) in equation (24); and (2) applying the Green formula to

i(
n
(kJ m

n
) and iL

n
(kJ q

n
) .
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The resonance modes (um
n
, vm

n
, wm

n
, km

n
) and the resonance angular frequencies um

n
are

de"ned as the solutions of the homogeneous equations
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The resonance modes are the free oscillations of the #uid-loaded shell. It has been shown
[6] that the resonance modes have a positive damping: that is,

um
n
"Xm

n
!iqm

n
, u~m

n
"!Xm

n
!iqm

n
with qm

n
'0.

This result is in accordance with the general theory presented in reference [13].

3.3. RESONANCE MODES SERIES OF THE RESPONSE OF THE FLUID-LOADED SHELL

TO A TRANSIENT EXCITATION

Let ;
n

denote the nth Fourier component of the shell displacement vector with
components (u

n
, v

n
, w

n
) and Um

n
the resonance displacement mode vector with components

(um
n
, vm

n
, wm

n
). The solution (u

n
, v

n
, w

n
, k

n
) of equations (22) is sought as a resonance modes

series of the form

A
;
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k
n
B"> (t)
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+

m/1 Gamn A
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n
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n
B e~*um

nt#a~m
n A

U~m
n

k~m
n

B e~*un
~mt H , (27)

where >(t) denotes the Heaviside step function.

3.3.1. Direct solution

This expression can be introduced into equations (22) with (uq*
n

, vq*
n

, wq*
n

, kq*
n

) as test
functions. Thus, an in"nite system of linear algebraic equations is obtained to determine the
coe$cients of the series expansion. From a numerical point of view, an approximation of
the solution of this system is obtained by a truncation procedure. Nevertheless, an
analytical expression of the coe$cients can be established.

3.3.2. Inverse Fourier transform method

The solution of equations (23) is sought as a series of the eigenmodes, that is

A
;K

n

kL
n
B" =

+
m/1

aL m
n A
;I m

n

kJ m
n
B , (28)

where ;K
n

is the shell displacement vector with components (uL
n
, vL

n
, wL

n
) and ;I m

n
is the

eigenmode displacement vector with components (uJ m
n
, vJ m

n
, wJ m

n
). By replacing the test
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functions by (uJ q*
n

, vJ q*
n

, wJ q*
n

, kJ q*
n

) and using the orthogonality relationship between the
eigenmodes, the coe$cients are obtained as
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n
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n
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s
hu2!Km
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i
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This expression is introduced into equation (28) and the inverse Fourier transform of the
corresponding series is evaluated by the residue method. It is easily seen that the coe$cients
am
n

and a~m
n

are given by
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i
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where Km{
n

(u)"LKm
n
(u)/Lu. The derivatives of the eigenvalues with respect to u are not

known explicitly. This restricts the use of the analytical expressions (30) to simple cases as,
for example, when the #uid is a gas and that a light-#uid approximation can be used.

It must be recalled that, if the excitation term is real, then the solution given by equation
(29) with the expansion coe$cients given by equation (15) is also real.

4. NUMERICAL METHOD AND RESULTS

The main problem is to compute the resonance frequencies and modes of the #uid-loaded
structure, that is to solve the homogeneous system of equations (26). The unknown
functions can be approximated by various methods; the most popular is the "nite element
method. A polynomial approximation method is used here, however.

4.1. POLYNOMIAL APPROXIMATION OF THE RESONANCE MODES

The advantage of such an approximation is to provide approximate resonance modes
which are regular functions (inde"nitely derivable) and thus have the regularity required.

The layer density km
n

is approximated by a truncated series of Legendre polynomials of
the variable s.

The shell displacement components are approximated by a truncated series of
polynomial functions built with a "nite number of Legendre polynomials. Each polynomial
function is chosen so that it satis"es the regularity conditions at the apexes. Thus, two
di!erent approximations are adopted: (1) for the tangential displacement components
um
n

and vm
n
, the approximation functions involve a linear combination of two Legendre

polynomials P
q
(s) and P

q`2
(s), with q"0, 1,2; and (2) for the normal displacement

components wm
n
, the approximation functions involve a linear combination of three

Legendre polynomials P
q
(s), P

q`2
(s) and P

q`4
(s), with q"0, 1,2. In both cases, the

coe$cients of the linear combination depend on the angular harmonic index n and
are calculated analytically. The truncated series are introduced into the resonance mode
equations, in which the approximation functions are used as test functions. A linear system
of equations is thus obtained for the coe$cients of the expansions of the resonance modes.
The resonance angular frequencies um

n
are approximated by the values of u for which the

determinant of the system equals to zero. All the details can be found in reference [6] and
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will be presented in a forthcoming paper devoted to comparisons of the predicted transient
response of the #uid-loaded shell with experiments.

4.2. COMPARISON OF COMPUTED RESONANCE FREQUENCIES WITH MEASURED ONES

The "rst 10 resonance frequencies of a ¸ine 2@ shell have been computed for the following
data: R"¸"27 mm, h"0)81 mm, .

s
"7900 kg/m2, E"199)73 GPa, l"0)314, .

0
"

1000 kg/m3, c
0
"1470 m/s.

Table 1 presents a comparison between the experimental results published in reference
[14] with the values predicted by the method proposed here. For information, the in vacuo
resonance frequencies have been calculated. It appears that the agreement is excellent: the
relative error on the real part of the resonance frequencies is 1)8% on the "rst one and
0)12% on the tenth one. It must be recalled that the physical data, and, in particular the
Young's, modulus and the Poisson ratio, have been measured very accurately by the
authors of the experimental study. This explains that the numerical prediction can agree so
well with the experiments.

The numerical method used by the authors in references [1}3] couples the "nite element
method and a boundary element method to predict the acoustic di!raction by elastic
structures. To the authors' knowledge, the method has been applied to the di!raction
problem by spherical shells for 0)kR)15 and by a ¸ine-2@ shell for 0)kR)10
(k"u/c

0
is the acoustic wavenumber in the #uid). As will be detailed in a forthcoming

paper, the resonance modes series method enables one to predict the di!racted "eld over
a frequency band 0)kR)50 for spherical shells and 0)kR)30 for a ¸ine-2@ shell while
keeping a reasonable computational time. Thus, it seems that, for a similar numerical cost,
the method based on the resonance modes expansion enables one to reach higher
frequencies than the direct method described in reference [3]. Indeed, the numerical cost of
the resonance modes method mainly depends on the number of modes required to predict
with a su$cient accuracy the transient response of a #uid-loaded structure whereas the cost
for a direct resolution of the problem in the frequency domain is closely related to the
frequency step required by the analysis.
TABLE 1

Comparison between computed and measured resonance frequencies for a steel-made ¸ine 2@
shell with radius R"27 mm, total length 4R and thickness h"0)81 mm

Resonance frequencies of ¸ine 2@ (kHz)

Measured Computed Relative error Computed
#uid loaded #uid loaded (%) in vacuo Mode no.

68)0 69)3!i3)0310~6 1)8 72)6 3
88)0 88)6!i2)2 0)7 89)9 4

107)1 107)9!i0)0059 0)74 108)0 5
124)0 121)4!i5)15 2 127)1 6
143)5 143)4!i1)2 0)07 146)1 7
163)8 164)4!i7)1 0)36 167)9 8
183)6 183)3!i2)8 0)14 184)7 9
198)6 198)9!i0)6 0)15 199)0 10
239)0 239)9!i8)2 0)37 240)2 11
257)0 256)7!i6)3 0)12 259)5 12
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5. CONCLUSION

The "rst important results of this work concerns the regularity conditions of a thin
spherical shell at the apexes. As has been mentioned, the only result which looks correctly
established [10] is slightly di!erent from that presented here. But the proof does not include
enough details to understand the reason for this di!erence. The proof here is based on the
"niteness of local e!orts and energy density together with the hypothesis that the simplest
equations*The Donnell and Mushtari approximation*are valid.

The method developed for the calculation of the shell response to a transient excitation
does not seem to be very often used. In general, the response of a #uid-loaded structure is
expanded in terms of the in vacuo resonance modes. It has been proposed here to use the
#uid-loaded resonance modes of the structure, instead. In the authors' opinion they are
much better adapted.

The approximation of the resonance modes by polynomial functions is not quite new.
Other techniques, as, for example, "nite elements approximations, could be used.
Nevertheless, the authors think that it is e$cient to account for the simple geometry of
the ¸ine-2@ structure which authorizes the use of orthogonal polynomials. The main
advantage is that the Ritz}Galerkin equations which approximate the variational equations
can be reduced to collocation equations [6]: the computing time is thus reduced while
keeping the same accuracy of the result. In a forthcoming paper, the numerical method will
be presented with much more detail and comparisons between numerical predictions and
experiments will prove the e$ciency of the #uid-loaded modes expansion for the
representation of the response of a thin structure*sphere or ¸ine-2@*to a transient
incident acoustic wave.
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